Outer automorphisms of supersoluble groups

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Supersoluble Groups

We shall term a group G supersoluble if every homomorphic image H9*l of G contains a cyclic normal subgroup different from 1. Supersoluble groups with maximum condition, in particular finite supersoluble groups, have been investigated by various authors: Hirsch, Ore, Zappa and more recently Huppert and Wielandt. In the present note we want to establish the close connection between supersoluble ...

متن کامل

Outer Automorphisms of Locally Finite p-Groups∗

Every group is an outer automorphism group of a locally finite p-group. This extends an earlier result [3] about countable outer automorphism groups. It is also in sharp contrast to results concerning the existence of outer automorphisms of nilpotent groups in [6, 13, 14].

متن کامل

Outer automorphisms of free Burnside groups

In this paper, we study some properties of the outer automorphism group of free Burnside groups of large odd exponent. In particular, we prove that it contains free and free abelian subgroups.

متن کامل

Parageometric Outer Automorphisms of Free Groups

We study those fully irreducible outer automorphisms φ of a finite rank free group Fr which are parageometric, meaning that the attracting fixed point of φ in the boundary of outer space is a geometric R-tree with respect to the action of Fr, but φ itself is not a geometric outer automorphism in that it is not represented by a homeomorphism of a surface. Our main result shows that the expansion...

متن کامل

The Existence of Outer Automorphisms of Some Groups, Ii

Proof. First we consider the case where G is not abelian. Evidently there exists a normal subgroup N of G which contains the center Z of G such that G/N is cyclic of order p. Let a be an element in G such that aN generates the group G/N, and let ZN be the center of N. Clearly ZN is a normal subgroup of G, and ZSZN. The mapping : ZN-^ZN defined by <p(x) = [x, a]=xax~1a~1 is easily seen to be ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Glasgow Mathematical Journal

سال: 2000

ISSN: 0017-0895,1469-509X

DOI: 10.1017/s0017089500010132